嗯好湿用力的啊c进来动态图_免费+国产+极品_777精品一区_一区二区三区四五区不卡

撥號18861759551

你的位置:首頁 > 技術文章 > 紅外(IR)應用的正確材料

技術文章

紅外(IR)應用的正確材料

技術文章

The Correct Material for Infrared (IR) Applications

Introduction to Infrared (IR)

Infrared (IR) radiation is characterized by wavelengths ranging from 0.750 -1000μm (750 - 1000000nm). Due to limitations on detector range, IR radiation is often divided into three smaller regions: 0.750 - 3μm, 3 - 30μm, and 30 - 1000μm – defined as near-infrared (NIR), mid-wave infrared (MWIR), and far-infrared (FIR), respectively (Figure 1). Infrared products are used extensively in a variety of applications ranging from the detection of IR signals in thermal imaging to element identification in IR spectroscopy. As the need for IR applications grows and technology advances, manufacturers have begun to utilize IR materials in the design of plano-optics (i.e. windows, mirrors, polarizers, beamsplitters, prisms), spherical lenses (i.e. plano-concave/convex, double-concave/convex, meniscus), aspheric lenses (parabolic, hyperbolic, hybrid), achromatic lenses, and assemblies (i.e. imaging lenses, beam expanders, eyepieces, objectives). These IR materials, or substrates, vary in their physical characteristics. As a result, knowing the benefits of each allows one to select the correct material for any IR application.

 

Figure 1: Electromagnetic Spectrum

 

The Importance of Using the Correct Material

Since infrared light is comprised of longer wavelengths than visible light, the two regions behave differently when propagating through the same optical medium. Some materials can be used for either IR or visible applications, most notably fused silica, BK7 and sapphire; however, the performance of an optical system can be optimized by using materials better suited to the task at hand. To understand this concept, consider transmission, index of refraction, dispersion and gradient index. For more in-depth information on specifications and properties, view Optical Glass.

 

Transmission

The foremost attribute defining any material is transmission. Transmission is a measure of throughput and is given as a percentage of the incident light. IR materials are usually opaque in the visible while visible materials are usually opaque in the IR; in other words, they exhibit nearly 0% transmission in those wavelength regions. For example, consider silicon, which transmits IR but not visible light (Figure 2).

Figure 2: Uncoated Silicon Transmission Curve

 

Index of Refraction

While it is mainly transmission that classifies a material as either an IR or visible material, another important attribute is index of refraction (nd). Index of refraction is the ratio of the speed of light in a vacuum to the speed of light within a given material. It is a means of quantifying the effect of light "slowing down" as it enters a high index medium from a low index medium. It is also indicative of how much light is refracted when obliquely encountering a surface, where more light is refracted as nd increases (Figure 3).

Figure 3: Light Refraction from a Low Index to a High Index Medium

 

The index of refraction ranges from approximay 1.45 - 2 for visible materials and 1.38 - 4 for IR materials. In many cases, index of refraction and density share a positive correlation, meaning IR materials can be heavier than visible materials; however, a higher index of refraction also implies diffraction-limited performance can be achieved with fewer lens elements – reducing overall system weight and cost.

 

Dispersion

Dispersion is a measure of how much the index of refraction of a material changes with respect to wavelength. It also determines the separation of wavelengths known as chromatic aberration. Quantitatively, dispersion is inversely given by the Abbe number (vd), which is a function of the refractive index of a material at the f (486.1nm), d (587.6nm), and c (656.3nm) wavelengths (Equation 1).

 

Materials with an Abbe number greater than 55 (less dispersive) are considered crown materials and those with an Abbe number less than 50 (more dispersive) are considered flint materials. The Abbe number for visible materials ranges from 20 - 80, while the Abbe number for IR materials ranges from 20 - 1000.

 

Index Gradient

The index of refraction of a medium varies as the temperature changes. This index gradient (dn/dT) can be problematic when operating in unstable environments, especially if the system is designed to operate for one value of n. Unfortunay, IR materials are typically characterized by larger values of dn/dT than visible materials (compare N-BK7, which can be used in the visible, to germanium, which only transmits in the IR in the Key Material Attributes table in Infrared Comparison).

 

How to Choose the Correct Material

When choosing the correct IR material, there are three simple points to consider. Though the selection process is easier because there is a much smaller practical selection of materials for use in the infrared compared to the visible, these materials also tend to be more expensive due to fabrication and material costs.

 

Thermal Properties – Frequently, optical materials are placed in environments where they are subjected to varying temperatures. Additionally, a common concern with IR applications is their tendency to produce a large amount of heat. A material's index gradient and coefficient of thermal expansion (CTE) should be evaluated to ensure the user is met with the desired performance. CTE is the rate at which a material expands or contracts given a change in temperature. For example, germanium has a very high index gradient, possibly degrading optical performance if used in a thermally volatile setting.

Transmission – Different applications operate within different regions of the IR spectrum. Certain IR substrates perform better depending on the wavelength at hand (Figure 4). For example, if the system is meant to operate in the MWIR, germanium is a better choice than sapphire, which works well in the NIR.

Index of Refraction – IR materials vary in terms of index of refraction far more than visible materials do, allowing for more variation in system design. Unlike visible materials (such as N-BK7) that work well throughout the entire visible spectrum, IR materials are often limited to a small band within the IR spectrum, especially when anti-reflection coatings are applied.

Figure 4: Infrared Substrate Comparison (Wavelength Range for N-BK7 is Representative for the Majority of Substrates Used for Visible Wavelengths Such as B270, N-SF11, BOROFLOAT®, etc.)

 

Infrared Comparison

Although dozens of IR materials exist, only a handful is predominantly used within the optics, imaging, and photonics industries to manufacture off-the-shelf components. Calcium fluoride, fused silica, germanium, magnesium fluoride, N-BK7, potassium bromide, sapphire, silicon, sodium chloride, zinc selenide and zinc sulfide each have their own unique attributes that distinguish them from each other, in addition to making them suitable for specific applications. The following tables provide a comparison of some commonly used substrates.

 

Key IR Material Attributes

Name

Index of Refraction (nd)

Abbe Number (vd)

Density 
(g/cm3)

CTE 
(x 10-6/°C)

dn/dT 
(x 10-6/°C)

Knoop Hardness

Calcium Fluoride (CaF2)

1.434

95.1

3.18

18.85

-10.6

158.3

Fused Silica (FS)

1.458

67.7

2.2

0.55

11.9

500

Germanium (Ge)

4.003

N/A

5.33

6.1

396

780

Magnesium Fluoride (MgF2)

1.413

106.2

3.18

13.7

1.7

415

N-BK7

1.517

64.2

2.46

7.1

2.4

610

Potassium Bromide (KBr)

1.527

33.6

2.75

43

-40.8

7

Sapphire

1.768

72.2

3.97

5.3

13.1

2200

Silicon (Si)

3.422

N/A

2.33

2.55

1.60

1150

Sodium Chloride (NaCl)

1.491

42.9

2.17

44

-40.8

18.2

Zinc Selenide (ZnSe)

2.403

N/A

5.27

7.1

61

120

Zinc Sulfide (ZnS)

2.631

N/A

5.27

7.6

38.7

120

 

IR Material Comparison

Name

Properties / Typical Applications

Calcium Fluoride (CaF2)

Low Absorption, High Refractive Index Homogeneity

Used in Spectroscopy, Semiconductor Processing, Cooled Thermal Imaging

Fused Silica (FS)

Low CTE and Excellent Transmission in IR

Used in Interferometry, Laser Instrumentation, Spectroscopy

Germanium (Ge)

High nd, High Knoop Hardness, Excellent MWIR to FIR Transmission

Used in Thermal Imaging, Rugged IR Imaging

Magnesium Fluoride (MgF2)

High CTE, Low Index of Refraction, Good Transmission from Visible to MWIR

Used in Windows, Lenses, and Polarizers that Do Not Require Anti-Reflection Coatings

N-BK7

Low-Cost Material, Works Well in Visible and NIR Applications

Used in Machine Vision, Microscopy, Industrial Applications

Potassium Bromide (KBr)

Good Resistance to Mechanical Shock, Water Soluble, Broad Transmission Range

Used in FTIR spectroscopy

Sapphire

Very Durable and Good Transmission in IR

Used in IR Laser Systems, Spectroscopy, and Rugged Environmental Equipment

Silicon (Si)

Low Cost and Lightweight

Used in Spectroscopy, MWIR Laser Systems, THz Imaging

Sodium Chloride (NaCl)

Water Soluble, Low Cost, Excellent Transmission from 250nm to 16μm, Sensitive to Thermal Shock

Used in FTIR spectroscopy

Zinc Selenide (ZnSe)

Low Absorption, High Resistance to Thermal Shock

CO2 Laser Systems and Thermal Imaging

Zinc Sulfide (ZnS)

Excellent Transmission in Both Visible and IR, Harder and More Chemically Resistant than ZnSe

Used in Thermal Imaging

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
人人干人人插| 黄视频网站免费观看| 国产一区精品| 久久国产影院| 亚洲www美色| 国产成人精品综合在线| 亚洲精品久久玖玖玖玖| 国产网站免费| 日本特黄特黄aaaaa大片| 亚欧成人乱码一区二区| 久久99中文字幕| 99久久精品国产高清一区二区| 91麻豆精品国产自产在线| 久久久久久久网| 91麻豆精品国产片在线观看 | 久久国产一区二区| 一级女人毛片人一女人| 精品国产亚一区二区三区| 黄视频网站免费看| 日韩中文字幕在线观看视频| 国产一区二区精品久久| 欧美一级视| 九九久久国产精品| 午夜激情视频在线播放| 国产视频网站在线观看| 亚洲wwwwww| 日日夜夜婷婷| 九九热国产视频| 国产高清视频免费观看| 日韩在线观看免费| 亚洲www美色| 国产一区二区精品| 亚洲第一页色| 欧美一级视频免费| 国产视频一区二区在线播放| 国产伦精品一区三区视频| 国产国语在线播放视频| 成人影院一区二区三区| 欧美α片无限看在线观看免费| 日韩av片免费播放| 国产不卡精品一区二区三区| 欧美另类videosbestsex视频| 欧美爱色| 国产福利免费视频| 国产成a人片在线观看视频| 国产极品白嫩美女在线观看看| 二级特黄绝大片免费视频大片| 久久99欧美| 免费国产在线视频| 999精品影视在线观看| 青青久久精品| 99久久视频| 91麻豆精品国产综合久久久| 一级女人毛片人一女人| 黄视频网站在线看| 国产成人啪精品| 日日日夜夜操| 亚洲精品久久久中文字| 黄视频网站在线免费观看| 国产a毛片| 精品久久久久久影院免费| 日韩专区第一页| 可以免费在线看黄的网站| 香蕉视频久久| 欧美另类videosbestsex高清| 国产麻豆精品高清在线播放| 精品国产香蕉伊思人在线又爽又黄| 日本免费乱人伦在线观看| 九九九国产| 99热精品一区| 成人影院一区二区三区| 久久精品欧美一区二区| 黄色免费三级| 韩国三级香港三级日本三级| 日本伦理黄色大片在线观看网站| 91麻豆精品国产片在线观看| 国产福利免费观看| 成人影视在线观看| 日韩在线观看网站| 一 级 黄 中国色 片| 欧美激情中文字幕一区二区| 青青青草影院| 成人免费网站久久久| 美女免费毛片| 精品在线观看一区| 一级女人毛片人一女人| 毛片成人永久免费视频| 青青青草视频在线观看| 国产网站在线| 91麻豆国产福利精品| 久久成人综合网| 国产精品123| 999精品影视在线观看| 欧美激情一区二区三区在线| 香蕉视频一级| 美国一区二区三区| 国产一区二区精品在线观看| 国产高清在线精品一区a| 欧美大片一区| 麻豆污视频| 亚洲天堂免费| 超级乱淫伦动漫| 九九久久99综合一区二区| 四虎论坛| 99热视热频这里只有精品| 999精品影视在线观看| 日韩中文字幕一区二区不卡| 一级毛片视频播放| 黄色福利片| 精品久久久久久免费影院| 九九精品在线| 国产国产人免费视频成69堂| 亚洲女初尝黑人巨高清在线观看| 久久久久久久久综合影视网| 国产视频一区在线| 99久久精品国产麻豆| 国产亚洲精品aaa大片| 亚洲www美色| 国产91精品露脸国语对白| 亚欧成人乱码一区二区| 成人免费观看视频| 欧美电影免费| 国产91丝袜高跟系列| 精品国产香蕉伊思人在线又爽又黄| 国产精品免费久久| 日韩在线观看网站| 亚欧乱色一区二区三区| 黄色福利片| 亚洲第一色在线| 韩国三级视频在线观看| 国产成人女人在线视频观看| 国产91精品露脸国语对白| 精品视频一区二区三区| 国产综合91天堂亚洲国产| 日韩中文字幕一区| 成人免费观看视频| 国产成人欧美一区二区三区的| a级精品九九九大片免费看| 黄视频网站免费| 国产a一级| 黄色短视频网站| 欧美激情一区二区三区视频高清 | 国产a一级| 999久久狠狠免费精品| 亚洲天堂免费| 日韩欧美一二三区| 亚洲第一色在线| 国产欧美精品| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 久久精品免视看国产明星| 国产国产人免费视频成69堂| 精品久久久久久中文字幕2017| 99久久精品费精品国产一区二区| 可以免费看毛片的网站| 一级片片| 99色视频在线观看| 欧美大片aaaa一级毛片| 一级女人毛片人一女人| 精品视频一区二区| 欧美激情一区二区三区视频| 国产不卡在线观看| 亚洲第一页乱| 精品久久久久久中文字幕一区| 国产原创视频在线| 999精品视频在线| 日韩综合| 日韩免费在线视频| 成人免费福利片在线观看| 精品在线免费播放| 日韩在线观看免费| 日本特黄特色aaa大片免费| 国产极品白嫩美女在线观看看| 欧美国产日韩久久久| 精品久久久久久免费影院| 麻豆网站在线看| 国产原创视频在线| 国产一级生活片| 国产91丝袜高跟系列| 天天做日日干| 一本高清在线| 一级片片| 免费一级片在线观看| 精品视频一区二区三区免费| 九九免费精品视频| 香蕉视频久久| 二级特黄绝大片免费视频大片| 日韩中文字幕在线观看视频| 国产成a人片在线观看视频| 日韩在线观看免费完整版视频| 久久国产影视免费精品| 国产a视频| 四虎久久精品国产| 国产极品精频在线观看| 久久久成人影院| 色综合久久天天综线观看| 亚洲精品永久一区| 麻豆系列 在线视频| 精品久久久久久综合网| 精品久久久久久影院免费| 高清一级淫片a级中文字幕|