嗯好湿用力的啊c进来动态图_免费+国产+极品_777精品一区_一区二区三区四五区不卡

撥號(hào)18861759551

你的位置:首頁(yè) > 技術(shù)文章 > 調(diào)制傳遞函數(shù)簡(jiǎn)介

技術(shù)文章

調(diào)制傳遞函數(shù)簡(jiǎn)介

技術(shù)文章

Introduction to Modulation Transfer Function

When optical designers attempt to compare the performance of optical systems, a commonly used measure is the modulation transfer function (MTF). MTF is used for components as simple as a spherical singlet lens to those as complex as a multi-element ecentric imaging lens assembly. In order to understand the significance of MTF, consider some general principles and practical examples for defining MTF including its components, importance, and characterization.

 

THE COMPONENTS OF MTF

To properly define the modulation transfer function, it is necessary to first define two terms required to truly characterize image performance: resolution and contrast.

 

Resolution

Resolution is an imaging system's ability to distinguish object detail. It is often expressed in terms of line-pairs per millimeter (where a line-pair is a sequence of one black line and one white line). This measure of line-pairs per millimeter (lp/mm) is also known as frequency. The inverse of the frequency yields the spacing in millimeters between two resolved lines. Bar targets with a series of equally spaced, alternating white and black bars (i.e. a 1951 USAF target or a Ronchi ruling) are ideal for testing system performance. For a more detailed explanation of test targets, view Choosing the Correct Test Target. For all imaging optics, when imaging such a pattern, perfect line edges become blurred to a degree (Figure 1). High-resolution images are those which exhibit a large amount of detail as a result of minimal blurring. Conversely, low-resolution images lack fine detail.

Figure 1: Perfect Line Edges Before (Left) and After (Right) Passing through a Low Resolution Imaging Lens

 

A practical way of understanding line-pairs is to think of them as pixels on a camera sensor, where a single line-pair corresponds to two pixels (Figure 2). Two camera sensor pixels are needed for each line-pair of resolution: one pixel is dedicated to the red line and the other to the blank space between pixels. Using the aforementioned metaphor, image resolution of the camera can now be specified as equal to twice its pixel size.

Figure 2: Imaging Scenarios Where (a) the Line-Pair is NOT Resolved and (b) the Line-Pair is Resolved

 

Correspondingly, object resolution is calculated using the camera resolution and the primary magnification (PMAG) of the imaging lens (Equations 1 – 2). It is important to note that these equations assume the imaging lens contributes no resolution loss.

 

Contrast/Modulation

Consider normalizing the intensity of a bar target by assigning a maximum value to the white bars and zero value to the black bars. Plotting these values results in a square wave, from which the notion of contrast can be more easily seen (Figure 3). Mathematically, contrast is calculated with Equation 3:

Figure 3: Contrast Expressed as a Square Wave

 

When this same principle is applied to the imaging example in Figure 1, the intensity pattern before and after imaging can be seen (Figure 4). Contrast or modulation can then be defined as how faithfully the minimum and maximum intensity values are transferred from object plane to image plane.

 

To understand the relation between contrast and image quality, consider an imaging lens with the same resolution as the one in Figure 1 and Figure 4, but used to image an object with a greater line-pair frequency. Figure 5 illustrates that as the spatial frequency of the lines increases, the contrast of the image decreases. This effect is always present when working with imaging lenses of the same resolution. For the image to appear defined, black must be truly black and white truly white, with a minimal amount of grayscale between.

Figure 4: Contrast of a Bar Target and Its Image

Figure 5: Contrast Comparison at Object and Image Planes

 

In imaging applications, the imaging lens, camera sensor, and illumination play key roles in determining the resulting image contrast. The lens contrast is typically defined in terms of the percentage of the object contrast that is reproduced. The sensor's ability to reproduce contrast is usually specified in terms of decibels (dB) in analog cameras and bits in digital cameras.

 

UNDERSTANDING MTF

Now that the components of the modulation transfer function (MTF), resolution and contrast/modulation, are defined, consider MTF itself. The MTF of a lens, as the name implies, is a measurement of its ability to transfer contrast at a particular resolution from the object to the image. In other words, MTF is a way to incorporate resolution and contrast into a single specification. As line spacing decreases (i.e. the frequency increases) on the test target, it becomes increasingly difficult for the lens to efficiently transfer this decrease in contrast; as result, MTF decreases (Figure 6).

Figure 6: MTF for an Aberration-Free Lens with a Rectangular Aperture

 

For an aberration-free image with a circular pupil, MTF is given by Equation 4, where MTF is a function of spatial resolution (ξ), which refers to the smallest line-pair the system can resolve. The cut-off frequency (ξc) is given by Equation 6.

 

Figure 6 plots the MTF of an aberration-free image with a rectangular pupil. As can be expected, the MTF decreases as the spatial resolution increases. It is important to note that these cases are idealized and that no actual system is compley aberration-free.

THE IMPORTANCE OF MTF

In traditional system integration (and less crucial applications), the system's performance is roughly estimated using the principle of the weakest link. The principle of the weakest link proposes that a system's resolution is solely limited by the component with the lowest resolution. Although this approach is very useful for quick estimations, it is actually flawed because every component within the system contributes error to the image, yielding poorer image quality than the weakest link alone.

 

Every component within a system has an associated modulation transfer function (MTF) and, as a result, contributes to the overall MTF of the system. This includes the imaging lens, camera sensor, image capture boards, and video cables, for instance. The resulting MTF of the system is the product of all the MTF curves of its components (Figure 7). For instance, a 25mm fixed focal length lens and a 25mm double gauss lens can be compared by evaluating the resulting system performance of both lenses with a Sony monochrome camera. By analyzing the system MTF curve, it is straightforward to determine which combination will yield sufficient performance. In some metrology applications, for example, a certain amount of contrast is required for accurate image edge detection. If the minimum contrast needs to be 35% and the image resolution required is 30 lp/mm, then the 25mm double gauss lens is the best choice.

 

MTF is one of the best tools available to quantify the overall imaging performance of a system in terms of resolution and contrast. As a result, knowing the MTF curves of each imaging lens and camera sensor within a system allows a designer to make the appropriate selection when optimizing for a particular resolution.

Figure 7: System MTF is the Product of the MTF of Individual Component: Lens MTF x Camera MTF = System MTF

 

CHARACTERIZATION OF MTF

Determining Real-World MTF

A theoretical modulation transfer function (MTF) curve can be generated from the optical prescription of any lens. Although this can be helpful, it does not indicate the actual, real-world performance of the lens after accounting for manufacturing tolerances. Manufacturing tolerances always introduce some performance loss to the original optical design since factors such as geometry and coating deviate slightly from an ideal lens or lens system. For this reason, in our manufacturing sites, Edmund Optics® invests in optical test and measurement equipment for quantifying MTF. This MTF test and measurement equipment allows for characterization of the actual performance of both designed lenses and commercial lenses (whose optical prescription is not available to the public). As a result, precise integration - previously limited to lenses with known prescriptions - can now include commercial lenses.

 

Reading MTF Graphs/Data

Reading Modulation Transfer Function Graphs/Data

A greater area under the MTF curve does not always indicate the optimal choice. A designer should decide based on the resolution of the application at hand. As previously discussed, an MTF graph plots the percentage of transferred contrast versus the frequency (cycles/mm) of the lines. A few things should be noted about the MTF curves offered by Edmund Optics®:

 

Each MTF curve is calculated for a single point in space. Typical field points include on-axis, 70% field, and full-field. 70% is a common reference point because it captures approximay 50% of the total imaging area.

Off-axis MTF data is calculated for both tangential and sagittal cases (denoted by T and S, respectively). Occasionally an average of the two is presented rather than the two individual curves.

MTF curves are dependent on several factors, such as system conjugates, wavebands, and f/#. An MTF curve is calculated at specified values of each; therefore, it is important to review these factors before determining whether a component will work for a certain application.

The spatial frequency is expressed in terms of cycles (or line-pairs) per millimeter. The inverse of this frequency yields the spacing of a line-pair (a cycle of one black bar and one white bar) in millimeters.

The nominal MTF curve is generated using the standard prescription information available in optical design programs. This prescription information can also be found on our global website, in our print catalogs, and in our lens catalogs supplied to Zemax®. The nominal MTF represents the best-case scenario and does not take into account manufacturing tolerances.

Conceptually, MTF can be difficult to grasp. Perhaps the easiest way to understand this notion of transferring contrast from object to image plane is by examining a real-world example. Figures 8 - 12 compare MTF curves and images for two 25mm fixed focal length imaging lenses: #54-855 Finite Conjugate Micro-Video Lens and #59-871 Compact Fixed Focal Length Lens. Figure 8 shows polychromatic diffraction MTF for these two lenses. Depending upon the testing conditions, both lenses can yield equivalent performance. In this particular example, both are trying to resolve group 2, elements 5 -6 (indicated by the red boxes in Figure 10) and group 3, elements 5 – 6 (indicated by the blue boxes in Figure 10) on a 1951 USAF resolution target (Figure 9). In terms of actual object size, group 3, elements 5 – 6 represent 6.35 – 7.13lp/mm (14.03 - 15.75μm) and group 3, elements 5 – 6 represent 12.70 – 14.25lp/mm (7.02 - 7.87μm). For an easy way to calculate resolution given element and group numbers, use our 1951 USAF Resolution EO Tech Tool.

 

Under the same testing parameters, it is clear to see that #59-871 (with a better MTF curve) yields better imaging performance compared to #54-855 (Figures 11 – 12). In this real-world example with these particular 1951 USAF elements, a higher modulation value at higher spatial frequencies corresponds to a clearer image; however, this is not always the case. Some lenses are designed to be able to very accuray resolve lower spatial frequencies, and have a very low cut-off frequency (i.e. they cannot resolve higher spatial frequencies). Had the target been group -1, elements 5-6, the two lenses would have produced much more similar images given their modulation values at lower frequencies.

Figure 8: Comparison of Polychromatic Diffraction MTF for #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right)

Figure 9: 1951 USAF Resolution Target

 

Figure 10: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 2, Elements 5 -6 (Red Boxes) and Group 3, Elements 5 – 6 (Blue Boxes) on a 1951 USAF Resolution Target

 

Figure 11: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 2, Elements 5 -6 on a 1951 USAF Resolution Target

 

Figure 12: Comparison of #54-855 Finite Conjugate Micro-Video Lens (Left) and #59-871 Compact Fixed Focal Length Lens (Right) Resolving Group 3, Elements 5 – 6 on a 1951 USAF Resolution Target

 

Modulation transfer function (MTF) is one of the most important parameters by which image quality is measured. Optical designers and engineers frequently refer to MTF data, especially in applications where success or failure is contingent on how accuray a particular object is imaged. To truly grasp MTF, it is necessary to first understand the ideas of resolution and contrast, as well as how an object's image is transferred from object to image plane. While initially daunting, understanding and eventually interpreting MTF data is a very powerful tool for any optical designer. With knowledge and experience, MTF can make selecting the appropriate lens a far easier endeavor - despite the multitude of offerings.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
国产高清在线精品一区a| 91麻豆精品国产自产在线| 尤物视频网站在线| 韩国毛片免费大片| 成人免费观看的视频黄页| 99热精品一区| 天天做人人爱夜夜爽2020毛片| 国产亚洲精品aaa大片| 国产91精品一区二区| 韩国三级一区| 四虎久久影院| 天天做日日爱| 日韩一级黄色片| 欧美大片a一级毛片视频| 国产原创中文字幕| 999精品影视在线观看| 国产美女在线一区二区三区| 中文字幕97| 成人免费高清视频| 美国一区二区三区| 久久国产精品永久免费网站| 毛片成人永久免费视频| 99久久精品费精品国产一区二区| 久久国产一区二区| 欧美激情影院| 国产伦精品一区二区三区无广告| 国产视频一区在线| 免费国产在线视频| 精品视频一区二区三区| 99热精品在线| a级毛片免费全部播放| 成人a大片高清在线观看| 亚洲爆爽| 免费毛片基地| 99热精品在线| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 成人高清免费| 精品国产一区二区三区久久久狼| 国产一区二区精品久久| 日韩专区亚洲综合久久| 国产极品精频在线观看| 成人免费网站视频ww| 久草免费在线观看| 国产91精品一区二区| 免费毛片基地| 国产亚洲精品成人a在线| 韩国三级香港三级日本三级| 久久久久久久久综合影视网| 日本在线不卡视频| 亚洲第一色在线| 韩国三级一区| 一本高清在线| 在线观看成人网| 黄视频网站在线看| 亚洲女初尝黑人巨高清在线观看| 日韩一级黄色大片| 四虎影视库国产精品一区| 中文字幕97| 欧美日本免费| 夜夜操天天爽| 欧美激情一区二区三区视频 | 日本在线不卡视频| 欧美一级视| 久久精品人人做人人爽97| 韩国毛片| 日韩av东京社区男人的天堂| 韩国三级香港三级日本三级la | 日本免费看视频| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 日韩免费在线| 日本免费区| 免费毛片播放| 色综合久久天天综合观看| 欧美激情一区二区三区在线 | 欧美爱爱网| 九九干| 亚飞与亚基在线观看| 欧美激情影院| 国产网站免费| 韩国三级香港三级日本三级la | 欧美日本国产| 欧美大片a一级毛片视频| 美女免费黄网站| 精品国产一区二区三区免费 | 中文字幕一区二区三区 精品| 日本伦理片网站| 九九九网站| 午夜在线亚洲| 亚欧成人乱码一区二区| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 青青久在线视频| 日韩专区亚洲综合久久| 国产一区国产二区国产三区| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 91麻豆精品国产高清在线| 免费毛片播放| 一 级 黄 中国色 片| 国产伦久视频免费观看 视频| 国产一区国产二区国产三区| 麻豆午夜视频| 久久久久久久男人的天堂| 日韩中文字幕在线播放| 精品视频在线观看免费| 日韩女人做爰大片| 成人影院一区二区三区| 999精品在线| 精品国产三级a∨在线观看| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 国产精品免费精品自在线观看| 可以免费看污视频的网站| 久久国产精品只做精品| 久久国产精品只做精品| 精品久久久久久中文字幕一区| 欧美18性精品| 欧美1区| 日韩中文字幕一区| 精品久久久久久中文字幕一区| 精品国产一区二区三区久| 国产精品自拍一区| 精品久久久久久中文字幕2017| 高清一级片| 韩国三级香港三级日本三级| 日韩免费在线| 久久精品免视看国产成人2021| 91麻豆精品国产高清在线| 欧美激情一区二区三区中文字幕| 欧美日本国产| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 日韩在线观看视频免费| 欧美α片无限看在线观看免费| 久久国产精品永久免费网站| 999精品视频在线| 国产欧美精品午夜在线播放| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 四虎久久影院| 美女免费毛片| 日韩在线观看视频黄| 日本免费看视频| 亚洲第一页乱| 97视频免费在线观看| 天天色色色| 香蕉视频亚洲一级| 欧美激情一区二区三区中文字幕| 精品国产一区二区三区久久久狼| 国产一级生活片| 国产麻豆精品视频| 91麻豆精品国产高清在线 | 色综合久久手机在线| 国产国语在线播放视频| 日本特黄一级| 黄视频网站免费观看| 日韩在线观看视频免费| 一级女性全黄生活片免费| 精品视频免费观看| 午夜在线亚洲| 香蕉视频久久| 亚洲天堂在线播放| 日韩专区在线播放| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 青草国产在线观看| 久久久成人网| 国产一区二区精品在线观看| 欧美日本国产| 国产视频网站在线观看| 99色播| 精品国产一级毛片| 91麻豆精品国产高清在线 | 日本伦理网站| 国产一区二区精品在线观看| 日韩专区第一页| 99久久精品国产国产毛片| 97视频免费在线观看| 午夜精品国产自在现线拍| 精品在线视频播放| 成人高清免费| 久久国产精品自线拍免费| 国产网站免费视频| 一级毛片视频免费| 欧美另类videosbestsex视频| 人人干人人插| 一级毛片看真人在线视频| 欧美国产日韩久久久| 欧美日本二区| 一 级 黄 中国色 片| 午夜欧美成人久久久久久| 国产视频网站在线观看| 欧美一级视频高清片| 欧美a级片免费看| 欧美国产日韩一区二区三区| 国产一区二区福利久久| a级毛片免费全部播放| 91麻豆精品国产高清在线 | 亚欧乱色一区二区三区| 黄色福利片| 国产网站免费| 99久久精品国产高清一区二区| 精品在线观看一区| 久久精品免视看国产明星| 欧美激情一区二区三区视频 | 日本在线www|